2 research outputs found

    Deep-Facial Feature-Based Person Reidentification for Authentication in Surveillance Applications

    Get PDF
    Person reidentification (Re-ID) has been a problem recently faced in computer vision. Most of the existing methods focus on body features which are captured in the scene with high-end surveillance system. However, it is unhelpful for authentication. The technology came up empty in surveillance scenario such as in London’s subway bomb blast, and Bangalore ATM brutal attack cases, even though the suspected images exist in official databases. Hence, the prime objective of this chapter is to develop an efficient facial feature-based person reidentification framework for controlled scenario to authenticate a person. Initially, faces are detected by faster region-based convolutional neural network (Faster R-CNN). Subsequently, landmark points are obtained using supervised descent method (SDM) algorithm, and the face is recognized, by the joint Bayesian model. Each image is given an ID in the training database. Based on their similarity with the query image, it is ranked with the Re-ID index. The proposed framework overcomes the challenges such as pose variations, low resolution, and partial occlusions (mask and goggles). The experimental results (accuracy) on benchmark dataset demonstrate the effectiveness of the proposed method which is inferred from the observation of receiver operating characteristic (ROC) curve and cumulative matching characteristics (CMC) curve

    Forensic video solution using facial feature‐based synoptic Video Footage Record

    No full text
    Person specific identification is an important problem in computer vision. However, forensic video analysis is the tool in surveillance applications, such as a specific person Video Footage Record can be used to help personalised monitoring. This study proposes a solution to identify the specific person very quickly through offline which will be valuable to analyse the incident/crime earlier. The main idea of this study is to reduce the enormous volume of video data by using an object‐based video synopsis. After that, Viola–Jones face detection, deformable part based models are used to detect the face attributes. Subsequently, histogram of oriented gradients and oriented centre symmetric local binary pattern features are extracted. Support vector machine classifier is used to classify the weak and strong features. These strong features are used to recognise the person. The algorithm works well even in complicated situations such as expression changes, pose, illumination variations and even if the face is partially as well as fully occluded in few frames. The advantage of synoptic video helps to recognise the person who is not occluded in some other frames. Experimental results on benchmark and real time datasets demonstrate the effectiveness of the proposed algorithm
    corecore